
1 
 

Potential salinity and temperature futures for the Chesapeake Bay using a statistical downscaling 1 

spatial disaggregation framework 2 

 3 

Barbara A. Muhling1,2*, Carlos F. Gaitán3, Charles A. Stock2, Vincent S. Saba4, Desiree Tommasi1,2, Keith 4 

W. Dixon2 5 

 6 

1: Princeton University Program in Atmospheric and Oceanic Science, Forrestal Campus/Sayre Hall, 7 

Princeton, NJ 08544, USA. 8 

2: NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA 9 

3: Arable Labs Inc., Princeton, NJ 08542, USA 10 

4: National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 11 

Northeast Fisheries Science Center, Geophysical Fluid Dynamics Laboratory, 201 Forrestal 12 

Road, Princeton University Forrestal Campus, Princeton, NJ 08540, USA 13 

* Barbara.Muhling@noaa.gov  14 

15 

mailto:Barbara.Muhling@noaa.gov


2 
 

Abstract 16 

Estuaries are productive and ecologically important ecosystems, incorporating environmental drivers 17 

from watersheds, rivers, and the coastal ocean. Climate change has potential to modify the physical 18 

properties of estuaries, with impacts on resident organisms. However, projections from general 19 

circulation models (GCMs) are generally too coarse to resolve important estuarine processes. Here we 20 

statistically downscaled near-surface air temperature and precipitation projections to the scale of the 21 

Chesapeake Bay watershed and estuary. These variables were linked to Susquehanna River streamflow 22 

using a water balance model, and finally to spatially-resolved Chesapeake Bay surface temperature and 23 

salinity using statistical model trees. The low computational cost of this approach allowed rapid 24 

assessment of projected changes from four GCMs spanning a range of potential futures under a high 25 

CO2 emissions scenario, for four different downscaling methods. Choice of GCM contributed strongly to 26 

the spread in projections, but choice of downscaling method was also influential in the warmest models. 27 

Models projected a ~2 - 5.5°C increase in surface water temperatures in the Chesapeake Bay by the end 28 

of the century. Projections of salinity were more uncertain and spatially complex. Models showing 29 

increases in winter-spring streamflow generated freshening in the upper Bay and tributaries, while 30 

models with decreased streamflow produced salinity increases. Changes to the Chesapeake Bay 31 

environment have implications for fish and invertebrate habitats, as well as migration, spawning 32 

phenology, recruitment, and occurrence of pathogens. Our results underline a potentially expanded role 33 

of statistical downscaling to complement dynamical approaches in assessing climate change impacts in 34 

dynamically challenging estuaries.      35 

Keywords: Chesapeake Bay, statistical downscaling, spatial disaggregation, climate change 36 

 37 
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Introduction 39 

Estuaries are highly productive coastal environments, which provide a broad range of ecosystem 40 

services to human communities (Beck et al. 2001; Martinez et al. 2007). They supply essential nursery 41 

habitats for several diadromous fishes, and support commercial and recreational fisheries targeting 42 

multiple species (Costa et al. 2002; Pihl et al. 2002). In addition, estuarine environments are important 43 

for nutrient cycling and filtration processes, and also function as natural storm protection (Martinez et 44 

al. 2007; Barbier et al. 2011). However, due to their accessibility to human populations, estuaries are 45 

often subject to heavy anthropogenic pressures (Edgar et al. 2000). They form a focal interface between 46 

terrestrial, river and ocean environments, and tend to concentrate and retain nutrients and pollutants 47 

(Barbier et al. 2011; Feyrer et al. 2015). Along with substantial landscape and flow regime modification, 48 

this has led to the eutrophication and degradation of ecosystem function in many estuaries worldwide 49 

(Cloern et al. 2016). 50 

 51 

In addition to these management challenges, there is increasing recognition of the potential for climate 52 

change impacts on estuaries. As estuaries are transitional systems between land and ocean, they will 53 

incorporate complex drivers from both environments, across multiple temporal and spatial scales 54 

(Scavia et al. 2002; Gillanders et al. 2011; Cloern et al. 2016). Changes to temperature and precipitation 55 

cycles in watersheds, including snow melt dynamics, will affect freshwater inflow to estuaries, shifts in 56 

flow peaks, extreme events, and droughts (Gleick and Adams 2000; Milly et al. 2005; Vigano et al. 2015; 57 

Demaria et al. 2016; Lee et al. 2016). Along with land use patterns, changes to flow cycles may modify 58 

nutrient and sediment inputs to estuaries, affecting eutrophication, habitats, and ability to meet 59 

management targets for water quality (Howarth et al. 2002; Scavia et al. 2002; Chen et al. 2014). Rising 60 

sea levels will result in increased coastal inundation, and altered circulation patterns and flushing 61 

characteristics (Scavia et al. 2002). Warming air temperatures will drive increases in estuarine water 62 

temperatures, with impacts on physiological stress, phenology, migration, and recruitment of estuarine-63 

dependent species (Hare and Able 2007; Wagner et al. 2011; Bell et al. 2014; Peer and Miller 2015; 64 

Wilber et al. 2016). Many diadromous fishes are already endangered, threatened or vulnerable as a 65 

result of habitat loss, overfishing, and pollution (Jelks et al. 2008; Limburg and Waldman 2009). Their 66 

reliance on estuarine habitats will likely render them highly vulnerable to the effects of climate change 67 

(Lynch et al. 2014; Hare et al. 2016).  68 

 69 
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There is clearly a need to develop and refine projections of future conditions in estuaries for the 70 

purposes of planning and management. However, current general circulation models (GCMs) have 71 

typical spatial resolutions of >100km. This is too coarse to resolve processes at the scale of most 72 

estuaries, or even the scale of most watersheds (Stock et al. 2011). Thus, GCMs are generally 73 

downscaled to a more appropriate spatial scale, using dynamical or statistical downscaling methods 74 

(Wood et al. 2004; Wagner et al. 2011; Flato et al. 2013). Statistical downscaling works by assuming that 75 

the local-scale climate is a product of both large-scale climatic processes, and smaller-scale local 76 

processes. Relationships between these can then be used to develop future projections of local 77 

conditions (e.g. Cannon and Whitfield 2002; Johnson and Weaver 2009; Gaitán et al. 2014; Dixon et al. 78 

2016). The advantages of statistical downscaling are primarily that it is computationally simpler and 79 

faster than dynamical downscaling, and that it incorporates bias-correction inherently. A key feature is 80 

that the computational simplicity allows for rapid generation of an ensemble of projections spanning a 81 

range of climate futures, GCMs, greenhouse scenarios, and internal climate variations (Hawkins and 82 

Sutton 2011). Incomplete exploration of this ensemble of climate futures is a primary limitation of the 83 

past generation of climate impacts assessments on marine resources (Cheung et al. 2016; Payne et al. 84 

2016). The main disadvantages of statistical downscaling are that stationarity is assumed (i.e. that the 85 

relationships between regional and local-scale processes remain constant as climate changes), and that 86 

long historical observational datasets are required (Wilby and Wigley 1997; Diaz-Nieto and Wilby 2005; 87 

Benestad et al. 2008; Dixon et al. 2016;). There is also a wide range of different downscaling methods to 88 

choose from, further expanding the range of climate futures that can be considered (Hessami et al. 89 

2008; Chen et al. 2013; Gaitán et al. 2014).    90 

 91 

Statistical downscaling is likely to be well suited for estuarine environments, as many have 92 

comprehensive time series data available for key variables such as temperature and salinity (Feyrer et al. 93 

2015; Cloern et al. 2016; Schulte et al. 2016). However, many modeling steps are required to get from 94 

coarse resolution atmospheric outputs from GCMs to projections of biologically relevant environmental 95 

conditions in the estuary itself. There are multiple choices to be made regarding input variables and 96 

model structure, with complex and interacting sources of uncertainty. Different studies have 97 

approached these questions differently: using one to many GCMs and a range of downscaling methods 98 

and hydrological models, across estuaries with different hydrological and environmental characteristics 99 

(e.g. Maurer and Duffy 2005; Wilby and Harris 2006; Vicuna and Dracup 2007; Chen et al. 2014; 100 

Thompson et al. 2015; Brown et al. 2016). 101 
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 102 

The Chesapeake Bay (Fig. 1) is the largest estuary in the United States, supporting multiple biological 103 

communities, ecosystems, and human use activities, and providing essential habitat for a large number 104 

of economically important fish and invertebrate species (Richards and Rago 1999; Sharov et al. 2003; 105 

Najjar et al. 2010). This importance has motivated decades of physical and biological observations to 106 

track and understand the response of the Chesapeake Bay to changes in land use, climate, and other 107 

potential stressors (Hagy et al. 2004; Kimmel and Roman 2004; Kemp et al. 2005; Najjar et al. 2010). 108 

Water quality in the Chesapeake Bay is strongly tied to the timing and magnitude of freshwater inflow 109 

events, through influences on nutrient and sediment delivery, flushing times, and stratification (Gibson 110 

and Najjar 2000; Glibert et al. 2001; Wood et al. 2002; Paerl 2006; Paerl and Otten 2013; Lee et al. 111 

2016). Historical land use practices in the watershed have led to significant eutrophication of the Bay, 112 

with consequent declines in water clarity, submerged aquatic vegetation, and bottom oxygen 113 

concentrations in warmer months (Sprague et al. 2000; Boesch et al. 2001; Langland et al. 2004; Kemp 114 

et al. 2005). Harmful algal blooms have also been increasing in incidence and severity, as a consequence 115 

of both nutrient enrichment and warming waters (Glibert et al. 2001; Paerl and Otten 2013). These 116 

events can contribute to hypoxia, fish kills, and seafood contamination (Tango et al. 2005). Water 117 

temperature in the Bay can also drive phenology and recruitment of various fish species (Hare and Able 118 

2007; Bell et al. 2014), while streamflow may trigger migration behaviors of diadromous species 119 

(Tommasi et al. 2015). There is therefore a substantial need to assess potential climate change impacts 120 

on streamflow, temperature, and salinity regimes in the Chesapeake Bay, and how these may interact 121 

with current management issues.       122 

 123 

While the data richness of Chesapeake Bay is conducive to statistical downscaling, the dynamical 124 

complexity poses challenges. The Bay is nearly 300 km long, and up to 48 km wide. While it has a 125 

relatively deep (>20 m) and narrow central channel with reasonably well characterized dynamics, much 126 

of the Bay consists of shallow and often complex habitat, with an average depth of only 6.5 m across the 127 

entire estuary (Hagy et al. 2005). More than half of the freshwater inflow comes from the Susquehanna 128 

River, which drains a 71,250 km2 watershed stretching across urban, suburban, and rural areas of the 129 

states of Maryland, Pennsylvania and New York (Schubel and Pritchard 1986; Hagy et al. 2005). This 130 

primary watershed combines with numerous smaller ones to shape salinity and circulation conditions 131 

across the Bay (Guo and Levinson 2007; Shen and Wang 2007; Reay and Moore 2009; Xu et al. 2012). 132 

While up-estuary portions of the Chesapeake Bay are strongly shaped by these river flows, down-133 
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estuary conditions reflect a mix of river input and continental shelf conditions. These dynamical 134 

complexities may impact the feasibility of statistical downscaling approaches.           135 

 136 

In this study, we developed a simple modeling framework to obtain projections of surface temperature 137 

and salinity in the Chesapeake Bay from multiple GCMs, downscaled using different statistical 138 

downscaling techniques. A key novel feature of this framework for the Chesapeake Bay is the ability to 139 

assess spatial structure of surface temperature and salinity. Our approach attempts to draw a balance 140 

between capturing the primary estuarine responses to climate drivers, while maintaining the 141 

computational efficiency required to rapidly assess a range of climate futures. We assess the sufficiency 142 

of this approach in capturing past variations in the surface hydrography of the Chesapeake Bay, and 143 

then examine primary drivers of estuarine conditions, and contributions to uncertainty from spread in 144 

GCM projections vs. downscaling methods. Potential consequences of both future change, and the 145 

uncertainty around these projections, are then discussed for the Chesapeake Bay ecosystem. 146 

 147 

Methods 148 

A conceptual diagram of the overall modeling framework is shown in Fig. 2a. Daily air temperature and 149 

total precipitation from GCMs were statistically downscaled, and fed into a simple water balance model 150 

to derive Susquehanna River streamflow. Daily air temperature was also used to estimate daily surface 151 

water temperature at the Thomas Point buoy (Fig. 1). Streamflow and water temperature were then 152 

combined with other variables to project spatial patterns of surface temperature and salinity across the 153 

Chesapeake Bay, at monthly resolution. Each step of this process is described in more detail below.  154 

 155 

Thomas Point Water Temperature Model 156 

Before the full framework could be used to generate future projections for the Chesapeake Bay, the 157 

development of several models relating air temperature and rainfall to water temperature and salinity 158 

using historical observations was required. The first and simplest of these predicted daily surface water 159 

temperature from daily air temperature (Fig. 2a). The best long-term time series of air and water 160 

temperature in the Chesapeake Bay is from the Thomas Point buoy, which has been recording since fall 161 

1985 (Fig. 1). Several studies (e.g. Hare and Able 2007; Hare et al. 2010; Tommasi et al. 2015) have used 162 

daily air temperature as a direct proxy for water temperature in estuaries and rivers, due to their low 163 

heat capacity relative to deeper ocean waters, often yielding a high correlation between the two 164 

variables. However, there are some issues with this approach. Firstly, the relationship between air and 165 
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water temperature is often non-linear, leveling off at very cold and very warm temperatures (Mohseni 166 

et al. 2003). As climate change projections will require extrapolation of present-day relationships, 167 

behavior at extremes is important to quantify. Leveling off at temperature extremes was clearly evident 168 

at Thomas Point. The daily air and water temperatures were strongly correlated (R2 = 0.89, RMSE = 169 

3.56°C), but the relationship was obviously non-linear, particularly at cold temperatures. Differences 170 

between daily air and water temperatures could exceed 5°C at cooler times of year (Fig. 3). 171 

 172 

Water temperatures integrate air temperatures over the preceding days to weeks, and may therefore 173 

lag them considerably, particularly during times of rapid air temperature change (Letcher et al. 2016). To 174 

account for this, we determined the optimum integration time for air temperature to predict daily water 175 

temperature. Correlations were calculated between daily water temperature (1985 – 2015) and moving 176 

means of daily air temperature, the latter tested at all values between 2 and 21 days. Of all the values 177 

tested, a 17 day moving mean best improved the correlation (R2 = 0.98, RMSE = 3.08°C) (Fig. 3). 178 

 179 

Once the lag issue had been addressed, the problem of non-linearity was solved using the exponential 180 

equation from Mohseni et al. (2003): 181 

 182 

 183 

 184 

This equation was optimized using the non-linear least squares (nls) function in R 3.2.1 (R Core Team, 185 

2015). The best fit between 17 day air temperatures and water temperatures was achieved where  =    186 

-6.53,  = 37.08,  = 0.1 and  = 14.49. While this equation was initially designed for unsmoothed daily 187 

data, it was also useful for further improving the fit of the 17 day air temperature vs. daily water 188 

temperature model, particularly at cooler temperatures (R2 = 0.99, RMSE = 3.04°C) (Fig. 3). This 189 

improvement in correlation was statistically significant at p<0.001 (Fisher r-to-z transformation).  190 

 191 

Water balance model 192 

A wide array of hydrological models are available for estimating streamflow from temperature, 193 

precipitation and other variables. We chose to test the sufficiency of a simple water balance model to 194 

maximize efficient and rapid consideration of multiple potential climate futures. Our water balance 195 

model requires only air temperature and precipitation, and runs at a monthly resolution, using Java code 196 
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provided by McCabe and Markstrom (2007) adapted into R 3.2.1. The model assigns precipitation in the 197 

watershed to snow or rain, depending on temperature. Results are aggregated for the whole watershed, 198 

and no routing models are included. Snow is stored in snowpack, with melt rates determined by 199 

temperature, while rain and snowmelt contribute to runoff after soil moisture storage is saturated. 200 

Runoff across the entire watershed area then becomes streamflow at the mouth of the Susquehanna 201 

River.  Actual evapotranspiration is determined from potential evapotranspiration (PET), soil moisture 202 

storage, and soil moisture storage withdrawal. Of the many methods available for calculating PET, we 203 

chose to use the Hamon equation, which has previously shown low error and bias in U.S. watersheds 204 

(Vorosmarty et al. 1998). All model parameters were set at the values recommended by McCabe and 205 

Markstrom (2007), except for the maximum snowmelt proportion, which was set to 0.7 instead of 0.5 206 

(within the range of parameter uncertainty). This adjustment gave predictions slightly closer to 207 

observations. Extractive water use in the catchment is currently <5% (Najjar 1999; SRBC 2013), and so 208 

we did not consider this in the water balance model.  209 

 210 

Historical precipitation and air temperature were obtained for the Susquehanna River watershed from 211 

the NOAA/NCEP GHCN CAMS 0.5° monthly temperature dataset (CAMS: Fan and van den Dool 2008), 212 

and the CPC Unified Gauge-Based 0.25° Analysis of Daily Precipitation (CPC: Chen et al. 2008). All grid 213 

points inside the watershed were averaged by year and month, from 1970 to 2006, and used to drive 214 

the water balance model. Results were compared to monthly streamflow observations at Conowingo 215 

Dam, which is ~16 km north of where the Susquehanna River opens into the northern end of the 216 

Chesapeake Bay (USGS station 01578310, obtained from 1970 to 2006 from 217 

http://waterdata.usgs.gov/nwis/dv/?referred_module=sw). Although the Potomac, James, and other 218 

rivers also deliver freshwater into the Chesapeake Bay, time series of monthly flow from all major rivers 219 

were highly correlated (e.g. Susquehanna vs. Potomac: R2=0.65, 1970 - 2006, USGS). As a result, we only 220 

modeled flow from the Susquehanna River for our framework, to maximize simplicity and minimize 221 

multicollinearity in predictive models.   222 

 223 

While modeled monthly streamflow from the water balance model (1970 - 2006) was well correlated 224 

with observed streamflow at Conowingo Dam (R2 = 0.76), predictions were biased low, particularly 225 

during winter (January – March) and spring (April – June) (Fig. 4). This suggested a problem with snow 226 

measurements, which are well known to be affected by wind-induced under-catch and bias from the 227 

placement of gauges (Hayhoe et al. 2007). Larsen and Peck (1974), and Adam and Lettenmaier (2003) 228 

http://waterdata.usgs.gov/nwis/dv/?referred_module=sw
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suggested that snow under-catch varied strongly by region, but averaged around 50% at wind speeds 229 

typical of the Susquehanna watershed in winter-spring (4 – 7 ms-1: NCEP/NCAR Monthly Reanalysis). 230 

Iterative testing of a snow catch ratio in the water balance model showed that a value of 0.55 was 231 

optimal (i.e. precipitation classified as snow by the water balance model should be divided by 0.55). This 232 

simple correction improved the bias of the model substantially, and also slightly improved the fit (R2 = 233 

0.8) (Fig. 4). However, very high flow events (e.g. Hurricane Agnes, 1972) were still somewhat under-234 

estimated by the model. Note that the snow correction was not required for projections from the GCMs, 235 

as it relates only to bias in actual precipitation observations from gauges.  236 

 237 

Spatial temperature and salinity models 238 

Spatial models were built using historical CTD cast data from the Chesapeake Bay Program 239 

(http://www.chesapeakebay.net/data), the University of Maryland Chesapeake Biological Laboratory 240 

cruise database (hjort.cbl.umces.edu), and the Smithsonian Environmental Research Center database 241 

(https://serc.si.edu/environmental-data), from 1986 - 2015. Surface temperature and salinity values 242 

were extracted from individual casts at all stations within the Chesapeake Bay and major tributaries. 243 

Stations <0.5 km from shore were excluded. This represented a small overall proportion of the pelagic, 244 

sub-tidal Chesapeake Bay, but excluded sampling stations subject to finer-scale nearshore variability, 245 

which our models would likely not be able to capture (e.g. Breitburg 1990). The CTD data set was used 246 

to estimate spatially-resolved surface temperature and salinity within the Chesapeake Bay, given 247 

estimates of Thomas Point surface temperature and streamflow (derived as described above) and a 248 

small set of additional predictors described below.    249 

 250 

Daily mean near-surface air temperature at Thomas Point was strongly correlated to air temperature at 251 

ten other nearby buoys in the Chesapeake Bay (75.8 - 77°W and 37 - 39.5°N) for years 2010 - 2014 (R2 = 252 

0.83 to 0.93), confirming highly coherent daily air temperature variation across the Chesapeake Bay. The 253 

estimated Thomas Point buoy temperature thus served as the primary predictor of surface water 254 

temperature at other latitudes and longitudes via spatial covariance. We also included three other 255 

predictors supported on both mechanistic and theoretical grounds: a) the 30 day trend in Thomas Point 256 

temperature change to account for seasonal hysteresis in spatial temperature covariance (Letcher et al., 257 

2016), b) freshwater inflow, which can have a pronounced cooling effect in the upper portions of the 258 

Bay relative to moderating ocean effects in its lower reaches (Preston, 2004), and c) the time of day to 259 

account for the diurnal signal in CTD casts (Table 1). Variables a) and b) are point measurements, taken 260 
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at only one spatial location (i.e. Thomas Point and the Conowingo Dam, respectively). We therefore 261 

included latitude and longitude as predictors in the model, to allow the modeling of surface 262 

temperature and salinity in two dimensional space. The same predictor variables were used for the 263 

spatial model of surface salinity, except that predicted Thomas Point temperature was not included. 264 

 265 

The Cubist package in R 3.2.1 (Kuhn et al. 2015) was used to create statistical model trees to predict 266 

surface temperature and salinity across the Chesapeake Bay (Fig. 2b). These models are similar to 267 

standard regression tree models, in that they split the training data into increasingly similar subsets 268 

based on the values of predictor variables, before arriving at predicted values at terminal nodes. Model 269 

trees differ, however, in that the values at the terminal nodes are described using multivariate linear 270 

equations (terminal linear models), rather than fixed values. These linear equations predict the value of 271 

the target outcome (in this case, temperature or salinity), based on a subset of the predictor variables. 272 

The model tree is thus reduced to a set of conditional linear regression equations or “rules”, which can 273 

then be either eliminated via pruning, or combined for simplification (Kuhn et al. 2015). As a result of 274 

their use of linear equations at tree nodes, model trees can extrapolate beyond the range of training 275 

datasets, while many other machine learning techniques cannot (Quinlan 1992, 1993). This 276 

characteristic is particularly important for modeling temperature under future climate change, as 277 

warming will lead to novel conditions outside the range of historical datasets. Model tree training can be 278 

refined using “committees”, which operate similarly to boosting for boosted regression trees (Elith et al., 279 

2008). Essentially, multiple model trees are constructed, each one learning from the deficiencies of the 280 

previous one, and the final predicted value is a mean from all trees (Kuhn et al. 2015).  281 

 282 

Machine learning predictive models are flexible and powerful, but can be prone to overfitting if 283 

appropriate steps are not taken to control this. They are generally expected to perform much better on 284 

training rather than unseen test or validation datasets (e.g. Elith et al. 2008), with high skill on training 285 

data and low skill on validation data indicative of overfitting, and potentially an overly complex model. 286 

To determine the best model configurations, model trees were therefore trained on the first 20 years of 287 

CTD data (1986 – 2005), and validated on the last 10 years (2006 – 2015). The optimal number of control 288 

rules and committees was determined by assessing root mean square error (RMSE) only on the unseen 289 

test data. The model configuration that gave the best results on the test data was thus considered to be 290 

sensitive enough to capture important relationships and interactions, but general enough to avoid 291 

overfitting. The optimum configuration to predict surface temperature was 100 committees, and a 292 
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maximum of 20 rules, while for surface salinity it was 100 committees, and a maximum of 15 rules. The 293 

importance of the predictor variables to both the conditional splits of the model tree, and the linear 294 

models at the terminal nodes, were reported as percentages, as described in Kuhn et al. (2015). The 295 

maximum importance score that a predictor can attain is 100%. Thus the total percentage score across 296 

all variables will not add up to 100%.   297 

 298 

As surface temperature and salinity both have very strong spatial characteristics in the Chesapeake Bay, 299 

the predictive power of the two model trees was assessed across 7 major sub-regions: the James, 300 

Rappahannock, Potomac and Patuxent Rivers, and the Upper, Mid and Lower portions of the Bay main-301 

stem (Fig. 1). The Upper Bay was defined as all main-stem waters north of the Patuxent River mouth, the 302 

Lower Bay was defined as waters south of the Rappahannock River mouth, and the Mid Bay was all 303 

main-stem waters in between. In addition, surface temperature results were assessed using monthly 304 

anomalies, to remove the effect of the very strong seasonal temperature signal (i.e. the observed 305 

monthly mean surface temperature for each sub-region was subtracted from both observed and 306 

modeled values before comparison).  307 

 308 

Selecting GCMs 309 

Our aim was to consider a range of plausible futures for the Chesapeake Bay, using GCMs from the 5th 310 

Coupled Model Intercomparison Project (CMIP5). All GCMs (n = 33) available which included 2m air 311 

temperature and total precipitation were assessed for inclusion. Model output was accessed through 312 

the NOAA Climate Change Web Portal (Scott et al. 2016), which re-grids GCMs to a common spatial 313 

resolution, and models were compared for the Chesapeake Bay and Susquehanna River watershed 314 

region (36 - 43°N, 74 - 80°W). Late 20th century (1956 - 2005) climatologies of air temperature and 315 

precipitation from GCMs were compared to observations from the CAMS temperature dataset, and the 316 

CPC precipitation analysis for the same region and time period. As model hindcast skill within a region of 317 

interest often differs among variables, selecting a subset of “best models” can be difficult (Overland et 318 

al. 2011; Sheffield et al. 2013). We instead focused on culling models with the highest hindcast error, 319 

and then selecting models that encompassed the range of future temperature and precipitation 320 

projections for use in our study. Outlier models were defined as those with an annual air temperature 321 

error of >2°C, and/or a precipitation error of >400 mm year-1. Seven of the 33 candidate GCMs were 322 

removed using these criteria: FGOALS-S2, MIROC-ESM, MIROC-ESM-CHEM, CAN-ESM2 and ACCESS1-3 323 

were excluded for warm temperature bias (>2°C) versus observations. FGOALS-G2 was too cool, and 324 
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rainfall in CMCC-CESM was too high. Adjusting total observed rainfall upwards with the snow correction 325 

described above did not change the model selections. 326 

 327 

The spread of future projections from the remaining models highlighted a broad range of potential 328 

futures for the region under RCP8.5 (Fig. 5). All GCMs projected warming temperatures, and some 329 

increase in mean annual precipitation in the Susquehanna River watershed. The extent of these trends, 330 

however, varied considerably among models. We chose four GCMs to capture the range of potential 331 

futures: GFDL-CM3 (more warming, greater precipitation increase: hereafter WW (warm wet) model), 332 

IPSL-CM5A-LR (more warming, less precipitation increase: hereafter WD (warm dry) model), GFDL-333 

ESM2G (less warming, less precipitation increase: hereafter CD (cool dry) model), and MRI-CGCM-3 (less 334 

warming, greater precipitation increase: hereafter CW (cool wet) model) (Fig. 5). Each of these GCMs 335 

had a spatial resolution of >90 km over the study area. While INMCM4 and FIO-ESM were both more 336 

extreme examples of cooler, drier GCMs than GFDL-ESM2G, they had very strong seasonal bias 337 

compared to historical observations (winter several degrees too warm, summer in INMCM4 also too 338 

cold). This bias persisted after downscaling, and so we selected ESM2G instead. 339 

 340 

Daily air temperature and precipitation were extracted from each GCM, at all grid points contained 341 

within the Susquehanna River watershed (Fig. 1). In addition, air temperature was extracted for the 342 

closest grid point to the Thomas Point buoy. Where several grid points were close to this location, the 343 

one where the mean late 20th century seasonal air temperature cycle most closely resembled that 344 

observed at Thomas Point (1985 - 2000) was chosen.  345 

 346 

Statistical Downscaling 347 

Statistical downscaling was used to derive a) estimates of Thomas Point air temperature, and b) 348 

estimates of air temperature and precipitation across the Chesapeake Bay watershed from coarse 349 

resolution GCM data. We note that the latter case involves deriving anomalies across a scale that can 350 

include several GCM grid cells but which nonetheless remains poorly resolved by GCMs.  351 

 352 

Four statistical downscaling methods were applied to outputs from the 4 GCMs: Bias-Corrected Quantile 353 

Mapping (BCQM), Change Factor Quantile Mapping (CFQM), Equidistant Quantile Mapping (EDQM), and 354 

the Cumulative Distribution Function Transform (CDFt). These statistical models are all based on 355 

quantile mapping but differ in their implementation of the bias-correction step. We acknowledge that 356 
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there are more sophisticated ways in which to derive quantile mapping functions (e.g. Cannon 2011) 357 

and that there are many more statistical downscaling techniques that also could have been used (e.g. 358 

Zorita and von Storch 1999; Wilby et al. 2002; 2003; Fasbender and Ouarda 2010; Zeng et al. 2011; 359 

Gaitán et al. 2014). However, we chose to include the selected methods, which are conceptually simple 360 

and relatively low-cost, to demonstrate the flexibility of our modeling framework. Our approach also 361 

investigates whether the downscaled projections from these related methods may differ, with 362 

implications for the use of multiple downscaling methods for impact assessment (Gaitán 2016). 363 

 364 

Of the aforementioned quantile methods, the most commonly employed is the BCQM (Ho et al. 2012). It 365 

derives separate bias corrections at each position (quantile) within the cumulative distribution function 366 

(CDF). In essence, the bias, defined as the difference between the observations and climate model 367 

during the historical period, is used as a correction factor for the model output during the future. The 368 

second method, the CFQM, (see Ho et al. 2012 for details), is much less commonly used in practice. In 369 

essence, the change in the model from the historical to the future period is applied to the historical 370 

observations, again separately at each position in the CDF.  371 

Since there is no obvious theoretical argument to favor either of the previous two strategies, Li et al. 372 

(2010) introduced the Equidistant Cumulative Distribution Function matching method (EDQM), 373 

combining aspects of the CFQM and BCQM methodologies. A criticism of the BCQM method is that it 374 

assumes that the bias computed for the historical period is applicable to the future (Li et al. 2010). 375 

Conversely one could criticize the CFQM approach since it assumes that the change factor computed for 376 

the climate model is equally applicable to the observations. The EDQM method deals with these issues 377 

by applying a correction that consists of two terms: one for bias correction and the other as a change 378 

factor. 379 

The fourth method, Cumulative Distribution Function transform (CDFt; Michelangeli et al. 2009), uses 380 

the following function to obtain the cumulative distribution function of the downscaled variable: 381 

FobsF (x)=FobsH (F-1
gcmH (FgcmF (x))),    382 

This method uses a series of post-processing refinements to improve the tail behavior of the projections 383 

(unlike the raw BCQM method, described above). Specifically, the time-series from the coarse-resolution 384 

GCMs are transformed to have the same mean as the local historical time series, thus preventing the 385 



14 
 

downscaled projections getting out of range when implementing the transform equation. Hence, the 386 

final output maintains the initial mean from the corresponding GCM output (historical or future).  387 

Specifically, we used the CDFt R package (Vrac and Michelangeli 2009) to obtain the downscaled time 388 

series. This implementation needs two parameters to be defined: npas and dev.  Dev, or the coefficient 389 

of development, is used to extend the range of data on which the quantiles will be calculated, while 390 

npas is the number of quantiles to be empirically estimated (default value is 100). Here, we used dev = 1 391 

and npas = default. 392 

 393 

Each grid point in the Susquehanna River watershed from the CPC precipitation analysis (n = 119, 1970 - 394 

2005) was assigned to the closest grid point for each GCM (n = 2 - 6: Fig. 1). A mean of all CPC grid points 395 

assigned to each GCM point was then used as the historical precipitation observations for downscaling. 396 

Daily air temperature observations were obtained from eight weather stations for 1970 - 2005. Similarly 397 

to precipitation, each weather station was assigned to the closest grid point for each GCM, and a mean 398 

taken to provide historical observations air temperature observations for downscaling. Air temperatures 399 

at Thomas Point were obtained from only one grid point from each GCM, and were downscaled using 400 

historical observed air temperatures at the Thomas Point buoy (1985 – 2015).  401 

 402 

Temperature and precipitation outputs from statistically downscaled GCMs were then run through the 403 

framework shown in Fig. 2a, to give projections of surface temperature and salinity across the 404 

Chesapeake Bay. As the water balance model ran at monthly resolution, all predictor variables input to 405 

the model trees were also aggregated to month and year before this analysis. Results thus provided 406 

projections of surface temperature and salinity at monthly resolution. Model outputs were compared 407 

between the late 20th century (1970 - 1999) and the late 21st century (2071 - 2100), to show possible 408 

temperature and salinity futures from different GCMs. 409 

 410 

Results 411 

Spatial surface temperature and salinity estimates 412 

Both the surface temperature and surface salinity models reproduced historical spatiotemporal 413 

variability across the Chesapeake Bay reasonably well, despite the dynamical complexity of the system. 414 

The predictive power of the surface temperature model on monthly anomalies (using only the out-of-415 

sample test years 2006-2015) was highest in the Lower Bay (i.e. most seaward: R2=0.74) and James River 416 

(R2 = 0.77), and lowest in the Rappahannock River (R2 = 0.62) (Table 2). RMSE averaged 1.32°C, and was 417 
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highest in the Rappahannock River (1.51°C), and lowest in the Lower Bay (1.14°C). The most important 418 

variables for the conditional splits in the model tree were the modeled water temperature at Thomas 419 

Point (75%), and the seasonal (30 day) change in air temperature (71%). These two variables were also 420 

most important to the terminal linear models, with scores of 100% and 76%, respectively.  421 

 422 

The surface salinity model gave the best results in the Upper Bay (R2 = 0.76), and was weakest in the 423 

Lower Bay and the Patuxent River (R2 = 0.55, R2 = 0.42, respectively) (Table 2). RMSE averaged 2.21, and 424 

was highest in the James River (3.00), and lowest in the Upper Bay (1.80). Absolute RMSE in the 425 

Potomac River was comparable to other regions (2.02), but constituted the highest percentage of 426 

observed mean annual salinity (49.5%) (Table 2). The most important variables for the conditional splits 427 

in the model tree were latitude (97%), longitude (90%) and streamflow (41%). These three variables 428 

were also most influential for the terminal linear models, with scores of 97%, 93% and 97%, respectively. 429 

 430 

Example time series of monthly observed and modeled surface temperature (anomalies) and surface 431 

salinity for the Upper Bay, Lower Bay and Potomac River show that the model trees generally tracked 432 

observed values well (Fig. 6). As expected, model skill was high during the 1986 – 2005 training period, 433 

and degraded somewhat in the unseen 2006 – 2015 testing period. However, R2 statistics between 434 

observed and predicted surface temperature anomalies stayed above 0.6 for the test period in all zones 435 

of the Chesapeake Bay. Monthly time series of surface salinity in the test period were also reasonably 436 

well represented in the James River, Mid Bay, Potomac River, Rappahannock River, and Upper Bay (R2 437 

>0.6). There was a more marked degradation of skill between training and testing time periods in the 438 

Lower Bay (R2 = 0.55) and Patuxent River (R2 = 0.42) (Table 2). Some point locations in the Bay were 439 

sampled repeatedly over the 30-year time series, and contained >500 observations. The skill of the 440 

models on unseen test data was similar whether the whole zone (e.g. Mid Bay) was aggregated 441 

together, or if these long-term station locations within each zone were assessed separately. For 442 

example, a station at -76.292°W, 38.319°N in the Mid Bay (CB5.1: Fig. 6) with 634 observations in the 443 

dataset had an out-of-model validation R2 between observed and modeled surface salinity of 0.61: the 444 

same value for the Mid Bay as a whole (Table 2). Similarly, a station at -76.602°W, 38.425°N with 564 445 

observations in the Patuxent River (LE1.1) had an R2 between observed and modeled surface salinity of 446 

0.40, whereas the value for the River as a whole was 0.42. The models were thus capturing seasonal and 447 

interannual variability at point locations in the Chesapeake Bay with acceptable skill, and not simply 448 

reflecting (for example) climatological salinity gradients within specific zones. 449 
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 450 

To further assess the ability of the model trees to capture not only climatological patterns, but 451 

anomalous years, spatial fields of both temperature and salinity were compared for a cool September 452 

(2011) vs. a warm September (2008), and a dry September (2010) vs. a wet September (2011) (Fig. 7). 453 

September was chosen as it was a generally well-sampled month across the time series, both spatially 454 

and temporally. We note that September 2011 was particularly wet due to the effects of Tropical Storm 455 

Lee (Cheng et al. 2013). Hindcasts from the model trees captured not only the higher surface 456 

temperatures during a warm year (Fig. 7c,d), and lower salinities during a wet year (Fig. 7g,h), but also 457 

the general spatial patterns of these phenomena. In particular, both observations and models 458 

highlighted the downriver and down-Bay movement of isohalines during times of high Susquehanna 459 

River flow (Fig 7g,h). The surface temperature predictions were somewhat more biased than those for 460 

surface salinity, with the western rivers showing a cool bias in 2011, and the Upper Bay showing a warm 461 

bias in 2008 (Fig. 7a-d). However, the overall spatial structure was reproduced reasonably well.   462 

 463 

Projected atmospheric temperature and precipitation changes 464 

Comparison of the four statistical downscaling methods used to link projected GCM-scale changes in air 465 

temperature and precipitation to the Chesapeake Bay showed that downscaled changes were similar in 466 

magnitude to those from the corresponding GCMs (2 – 5.5 °C, ~0 - 200 mm year-1 rainfall) (Fig. 8). 467 

However, overall trends and separation amongst the 4 GCMs was less clear for precipitation, which 468 

showed much stronger interannual variability than temperature. In addition, the contribution of 469 

downscaling methods to variability in projections was much less than the contribution of inter-GCM 470 

variability, for the 4 GCMs examined here (Fig. 8). Choice of downscaling method, however, could exert 471 

a significant impact by the end of the 21st century for GCMs with the largest projected warming. The 472 

mean difference among the warmest and coolest downscaling methods for 2071 - 2100 was 0.7°C for 473 

the WW model, and 0.8°C for the WD model (Fig. 8a).  474 

 475 

Surface temperature and salinity futures for the Chesapeake Bay 476 

Annual mean projections of Bay-wide averages of surface temperature showed a clear warming trend 477 

similar to that of air temperature (Fig. 9a). Projections of surface salinity and Susquehanna River 478 

streamflow were more variable, however the two wetter models (WW and CW) showed little change to 479 

annual mean salinity or streamflow by the end of the century. In contrast, the two dry models (WD and 480 

CD) projected significantly decreased mean annual streamflow, and thus increasing surface salinity (Fig. 481 
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9b,c). When this analysis was repeated for each season (graph not shown), the CW model also showed a 482 

significant decrease in winter salinity, and increase in streamflow, by 2100 (linear regression, p < 0.05, 483 

Durbin-Watson test p > 0.05) 484 

 485 

Projections from each GCM averaged across all downscaling methods showed warming of Chesapeake 486 

Bay surface waters during all seasons by the latter half of the last 30 years of the 21st century (Fig. 10). 487 

However, the extent of overall warming and its seasonal distribution varied among models. The WW 488 

model projected the strongest warming in estuarine water temperatures between 1970 - 1999 and 2071 489 

- 2100: > 5°C in all seasons. Warming in this model was particularly strong in winter (January - March) 490 

and fall (October – November), when compared to the other GCMs. In contrast, the WD model showed 491 

the weakest warming in winter: 2.7°C between 1970 - 1999 and 2070 - 2100, vs >4°C in all other 492 

seasons. The CW model projected the weakest warming overall: from 2.3°C in winter to 3.0°C in fall by 493 

the end of the century. Both the WW and WD models projected mean summer (July – September) 494 

surface temperatures across the Bay of >30°C by 2071 - 2100, compared to a historical (1970 - 1999) 495 

mean of 25.5 - 26°C. In contrast, the CW model projected mean summer water temperatures of 28.0°C 496 

for 2071 – 2100, and the CD model 28.9°C. The strong winter warming in the WW model resulted in 497 

projections of mean winter surface temperatures of 11.5°C, much warmer than for 1970 - 1999, where 498 

the mean was 6.3°C. In contrast, the CW, WD and CD models projected winter surface temperatures of 499 

8.7 – 9.0°C by the end of the century (Fig. 10). Projections of winter warming and streamflow changes 500 

were more variable than those for summer, across all models. 501 

 502 

Warming in the WW and WD models resulted in projected conditions well outside the range of historical 503 

variability during summer. For example, the maximum observed surface water temperature at the 504 

Thomas Point buoy (1985 - 2015) was 29.9°C, recorded on August 4th, 2006. By the end of the 21st 505 

century (2071-2100), this value was projected to be exceeded on 63% of days in July, in both the WW 506 

and WD models. For August, this value was exceeded on 100% of days in the WW model, and 87% of 507 

days in the WD model. In contrast, surface temperature at Thomas Point was projected to exceed 29.9°C 508 

on only 14% of days in August in the CW model by the end of the century, and 37.6% of days in the CD 509 

model. Thus summer conditions in the Chesapeake Bay were projected to be strongly novel in the WW 510 

and WD models, but less so in the CW and CD models.   511 

 512 
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Changes in streamflow varied strongly among models. While the wetter WW and CW models projected 513 

increases in late winter/early spring streamflow from the Susquehanna River and stable mean flows 514 

during other seasons, the WD model projected decreased streamflow across most seasons by the end of 515 

the century (Fig. 10). This was despite modest increases in precipitation, and was due to increased 516 

evapotranspiration associated with warming atmospheric conditions. The different models were in 517 

much closer agreement for summer, with all showing either stable or slightly decreasing streamflow. 518 

Surface salinity changes reflected differences in streamflow patterns across models. Changes were close 519 

to neutral for much of the spring through fall in all models. Projections diverged, however, in the winter 520 

and early spring, with more saline conditions prevailing for the drier WD model, and fresher conditions 521 

for the WW and CW models.  522 

 523 

Overall, choice of statistical downscaling method contributed less to variability in projections than 524 

choice of GCM (Fig. 8). However, a comparison of the coolest (BCQM) and warmest (CFQM) methods for 525 

the WW model highlighted considerable discrepancies in projections at certain times of year (Fig. 11). 526 

The CFQM model was 1.4°C warmer than the BCQM model during the summer, and Susquehanna River 527 

streamflow was ~200 m3 s-1 less during winter-early spring (January – April). Differences in salinity 528 

between the two downscaling methods were small, but were slightly lower for BCQM.    529 

 530 

Projected increases in surface temperature were largely spatially coherent across the Chesapeake Bay, 531 

but some spatial structure was apparent. We focus on the summer period, when the Chesapeake Bay is 532 

most likely to experience warm conditions beyond previously recorded highs, which could stress the 533 

physiological limits of contemporary marine communities. Results from other seasons are shown in the 534 

Supplementary Material (Fig. S1). In each case, the two GCMs with the smallest and largest changes in 535 

temperature are shown. Reduced warming was associated with the southern end of the Chesapeake 536 

Bay, due to the moderating influence of continental shelf waters (Fig. 12). Maximum warming was 537 

associated with the Upper Bay, particularly in the WW model. 538 

 539 

Stronger spatial structure was apparent in the projected changes in surface salinity. We focus on the 540 

winter period (January – March) where projected changes in streamflow were highest, as were contrasts 541 

between the models. Results from other seasons are shown in the Supplementary Material (Fig. S2). In 542 

each case, the two GCMs with the smallest and largest changes in salinity are shown. Changes in the 543 

WW model were strongest in the Upper Bay, and in mid-low reaches of some western rivers. These are 544 
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currently transition zones between oligohaline and mesohaline waters, or mesohaline and polyhaline 545 

waters, and salinity decreases in these areas represent mean downstream movement of isohalines. The 546 

weakest salinity change was in upstream portions of rivers, where conditions are currently tidal fresh to 547 

oligohaline, and so increasing streamflow cannot decrease salinity substantially (Fig. 13). In contrast, the 548 

decreased streamflow in the WD model lead to projected increases in salinity throughout the Bay. 549 

Similarly to the WW model, changes were strongest in the Upper Bay, and the mid reaches of some 550 

western rivers, representing a particularly large percentage change given current low salinities in these 551 

areas. Weakest changes in salinity were projected for tidal fresh to oligohaline reaches of rivers, which 552 

were expected to stay largely fresh despite reduced streamflow.    553 

 554 

Discussion 555 

Modeling framework: uncertainty and complexity  556 

A key challenge for understanding potential climate change impacts on natural resources and 557 

environments is the development of projections at the appropriate spatial scale. GCMs generally have 558 

coarse spatial resolution, and inherent bias in the simulation of important processes (Wood et al. 2004; 559 

Xu and Yang 2012). Downscaling using either dynamical or statistical techniques usually improves 560 

projections, but each family of methods is subject to advantages and disadvantages. Dynamical 561 

downscaling has the advantage of explicitly and mechanistically representing physical processes 562 

controlling regional climate (Hellström et al., 2001). However, it is computationally expensive, which 563 

makes comparison of multiple GCMs and emission scenarios more difficult. In addition, the dynamically 564 

downscaled model will usually inherit the bias of the parent GCM, and addressing this issue is complex 565 

(Xu and Yang 2012). This is an important consideration for projections involving hydrological 566 

simulations, which are sensitive to bias in both the mean and spatial distribution of watershed 567 

properties (Wood et al., 2004).  568 

 569 

Statistical downscaling has the disadvantage of relying on empirical relationships between coarse- and 570 

fine-scale processes, and assuming that these relationships will remain valid when projected into the 571 

future (i.e. stationarity: Schmith 2008; Michelangeli et al. 2009; Cannon 2010; Kallache et al. 2011; 572 

Gaitán and Cannon 2013; Dixon et al. 2016). However, advantages include inherent bias correction, and 573 

a much lower computational cost than dynamical downscaling. As a result, the statistical framework    574 

presented here allowed consideration of a range of projected surface temperature and salinity futures 575 

for the Chesapeake Bay under climate change. While relatively simple, our approach was able to 576 
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reproduce historical conditions well at monthly resolution, and facilitated the easy and rapid 577 

comparison of multiple GCMs and statistical downscaling methods. To establish the methodology, here 578 

we tested four GCMs spanning the range of plausible future temperature and precipitation projections 579 

from CMIP5, and one CO2 concentration pathway, however the statistical framework could easily ingest 580 

outputs from other models and scenarios. 581 

 582 

We build on previous studies of potential climate change impacts to the Chesapeake Bay by using 583 

statistical model trees to consider both surface temperature and salinity in two dimensions. Although 584 

the use of one-dimensional air temperature as a proxy for water temperature (e.g. Pilgrim et al. 1998; 585 

Hare & Able 2007; Tisseuil et al. 2012; Jacobs et al. 2015) is a reasonable strategy in shallow estuarine 586 

environments, the more complex approach used in this study confers several advantages. Firstly, non-587 

linearities in the air-temperature vs. water-temperature relationship could be accounted for, in a way 588 

that allowed for future extrapolation. Secondly, the influence of streamflow on surface water 589 

temperature could be included, although this effect was minor compared to that of air temperature in 590 

the Chesapeake Bay. This may not be the case in other estuaries more influenced by snowmelt, 591 

however. More importantly, projections of Chesapeake Bay salinity changes exhibited spatial contrasts 592 

within the Bay which have not been previously estimated, though changes in estuarine salinity have 593 

effects on marine resources comparable to those imposed by more often emphasized temperature 594 

shifts (Rome et al., 2005; Constantin de Magny et al., 2009; Jacobs et al., 2014, see additional discussion 595 

below).     596 

 597 

While more complex than a linear air temperature proxy model, our approach was much less 598 

complicated than many other examples in the literature. Our water balance model was one of the 599 

simplest available, and did not include complex soil dynamics, flow routing, nutrient and sediment 600 

dynamics, or groundwater inflow (e.g. Hayhoe et al. 2007; Chen et al. 2014; Demaria et al. 2016; Lee et 601 

al. 2016), which may have led to an over-estimation of watershed evapotranspiration (Milly and Dunne 602 

2011), and an inability to capture extreme flow events (e.g. hurricanes, floods). We also did not consider 603 

hydrodynamics of the estuary in three dimensions, which usually requires additional parameters, such 604 

as wind fields (Gibson and Najjar 2000; Valle-Levinson et al. 2001;  Xu et al. 2012; Lee et al. 2013; Irby et 605 

al. 2016). Considering the effects of sea level rise on temperature and salinity in the Chesapeake Bay 606 

was also beyond the scope of this study, even though these may be substantial (Hong and Shen, 2012; 607 

Ross et al. 2015). This was largely because the impacts of sea level rise on estuarine conditions are 608 
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spatially and temporally complex (e.g. Hilton et al. 2008), and because projections of the future 609 

magnitude of sea level rise are extremely divergent and uncertain (Church et al. 2013; Grinsted et al. 610 

2015). Our projections of surface temperature and salinity would also not represent potential changes 611 

throughout the entire water column, which are more relevant to organisms which do not live at the 612 

surface. Despite these simplifications, our approach was able to reproduce observations in the 613 

Chesapeake Bay at a monthly resolution with good accuracy, using only air temperature and watershed 614 

precipitation as inputs. However, different or modified models may be required for other watersheds 615 

with different characteristics (e.g., smaller, more arid, more influenced by snowmelt etc.). We also note 616 

the importance of continued development of dynamical approaches that allow extrapolation beyond 617 

surface properties and to biogeochemical impacts such as hypoxia (Bever et al. 2013; Brown et al. 2013; 618 

Testa et al. 2014; Feng et al. 2015). Applications of statistical and dynamical tools in concert may 619 

maximize the benefits of large ensembles that statistical approaches facilitate, along with the stronger 620 

mechanistic linkages enabled by dynamical approaches. 621 

 622 

An advantage of the simplicity of our statistical framework was the ability to include projections from 623 

multiple GCMs, downscaled using multiple methods. We found that the choice of GCM contributed 624 

much more to overall uncertainty than choice of downscaling method. However, this was largely a 625 

product of the decision to include GCMs with widely diverging futures, but to use statistical downscaling 626 

methods with reasonably similar characteristics. Previous studies (e.g. Wood et al. 2004; Wilby and 627 

Harris 2006; Chen et al. 2011; Mandal et al. 2016) have found that the choice of statistical downscaling 628 

method can contribute considerable uncertainty to future projections in some systems. However, the 629 

suite of GCMs, hydrological models and statistical downscaling methods differed between each study. 630 

Clearly, the relative contribution of model and downscaling methods to projection uncertainty depends 631 

on both the method and model selected, and will be region specific (Johnson et al. 2012). A more 632 

exhaustive assessment of their relative influence on projection uncertainty will require consideration of 633 

a wider range of downscaling methods. Ideally, downscaling approaches would be explicitly considered 634 

within a full suite of uncertainty sources impacting projections (Hawkins and Sutton 2011; Cheung et al. 635 

2016).    636 

 637 

While in our study the choice of GCM was more influential than the choice of statistical downscaling 638 

method, the two warmer models (WW and WD) showed some divergence of projections from different 639 

downscaling methods in the later 21st century. Results diverged primarily at the tails of the distributions, 640 
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particularly where future conditions were outside ranges experienced in the historical period (e.g. 641 

summer temperatures: Fig. S3). This was primarily a result of the different bias-correction procedures 642 

used in each technique (see Methods). Many climate change impact studies include only one statistical 643 

downscaling method, without consideration of the effect of this choice on overall propagation of error 644 

or variance. Our results suggest that the choice of downscaling method can introduce considerable 645 

variability once conditions diverge from current observations, even among closely related methods. For 646 

example, projected mean annual air temperatures in the Susquehanna River watershed by the end of 647 

the 21st century in the WD model differed by 0.8°C between the four statistical downscaling methods. 648 

The more conservative EDQM method projected mean temperatures from 2071 – 2100 of 15.4°C, while 649 

the warmer CFQM method projected a mean of 16.2°C. The other methods (BCQM and CDFt) were 650 

intermediate between the two.  651 

 652 

Potential impacts from projected temperature and salinity changes 653 

Results from this study highlighted several potential changes to surface temperature and salinity in the 654 

Chesapeake Bay by the end of the century. All GCMs projected substantial warming under RCP8.5, 655 

however the magnitude of warming between the late 20th and late 21st centuries varied markedly. For 656 

example, the WW model projected an increase in summer surface temperatures of >5°C, while the CW 657 

model projected as little as ~2°C. The models also disagreed on which season would see the strongest 658 

warming. In all models, the magnitude of summer warming was more much less variable than that for 659 

winter. Changes to salinity were even less certain, particularly for winter and fall. While the warmer, 660 

drier WD model projected increases in salinity for both these seasons, the WW and CW models showed 661 

salinity decreases for winter. In contrast, all models projected weaker changes to salinity for summer.  662 

 663 

These findings are broadly consistent with many of those from Najjar et al. (2010), who reviewed 664 

potential climate change impacts on the Chesapeake Bay using CMIP3 GCMs. Apart from one outlier 665 

(CCSR), a 7-member ensemble also projected a ~2 – 5.5°C increase in temperature over the Chesapeake 666 

Bay watershed area in this earlier study. However, similarly to the present study, precipitation 667 

projections were much more variable, ranging from a ~30% decrease to a ~20% increase within seasons. 668 

Variability in freshwater inflow to the Chesapeake Bay is largely driven by precipitation, rather than 669 

evapotranspiration (Najjar 1999; Gibson and Najjar 2000; Najjar et al. 2010). Uncertainty in precipitation 670 

projections from the GCMs is thus the main driver of uncertainty in projected streamflow, and surface 671 

salinity within the Bay. This uncertainty in projected future precipitation, and thus streamflow, is a 672 
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common thread in many other studies from the NE United States (Najjar et al. 2010; Johnson et al. 673 

2012), and other locations (Schneider et al. 2013; Bosshard et al. 2014).    674 

 675 

The key addition of our study relative to previous GCM syntheses (including Najjar et al. 2010) is 676 

inference of the implications of these large-scale changes on spatial temperature and salinity patterns in 677 

Chesapeake Bay. These are, to our knowledge, the first spatially resolved salinity and temperature 678 

projections for the Bay, and the first comparison of projection uncertainty at the scale of the estuary 679 

itself. For summer warming, results highlight a strong coherent warming signal with uncertainty bounds 680 

mimicking the range of projected changes in surface air temperature.  Weaker warming was projected 681 

for the Lower Bay, potentially due to the moderating influence of nearby continental shelf waters. For 682 

salinity, results highlight regions likely subject to larger salinity changes. For the majority of projections 683 

showing the potential for altered streamflow during the winter and early spring, mesohaline regions are 684 

likely to experience the largest absolute changes in salinity, however oligohaline areas may experience 685 

the largest percentage changes. 686 

 687 

The strong temperature and salinity gradients in the Chesapeake Bay result in distinct spatial 688 

distributions of resident organisms, driven by species-specific physical tolerances (Atwood et al. 2001; 689 

Cotton et al. 2003; Jung and Houde 2003; Kimmel et al. 2006). Climate-driven changes in temperature 690 

and salinity will therefore alter spatiotemporal habitat availability, and species may need to change their 691 

spatial distributions and migratory patterns if conditions begin to exceed tolerable ranges (Wood et al. 692 

2002; Najjar et al. 2010). For example, some coldwater species such as winter flounder 693 

(Pseudopleuronectes americanus) are currently only present in the Chesapeake Bay during cooler 694 

months. Laboratory experiments on adults suggest a relatively cool temperature preference of 13 - 695 

14°C, and they have been observed to stop feeding at temperature >23°C (Olla et al. 1969; Periera et al. 696 

1999). Projections from this study suggest mean spring surface water temperatures of 21.5°C (CW) to 697 

>23°C (WW) by the end of the century under RCP8.5 (Fig. 9), compared to a recent historical mean of 698 

~18°C. Under this scenario, if the rest of the water column warms at a comparable rate to surface 699 

waters, this species may spend less time in the Chesapeake Bay, or eventually be excluded altogether. 700 

This is particularly likely if future conditions follow projections suggested by the warmer WW and WD 701 

models. While projections from our study show some slight thermal refugia in the Lower Bay and lower 702 

James River, most of the Chesapeake Bay is projected to warm substantially. Similarly, juvenile Atlantic 703 

sturgeon (Acipenser oxyrhynchus) are physiologically stressed by temperatures of >28°C in their first few 704 



24 
 

years of life in the Bay (Niklitschek and Secor 2005). While recent historical and present-day summer 705 

surface temperatures average ~25 - 26°C, these may increase to between 27 - 29°C (CW) and >30°C 706 

(WW) by the end of the century. The differences in projected temperature in the Chesapeake Bay 707 

among different climate models could thus encompass the difference between a moderate and 708 

potentially lethal change in conditions for some species.  709 

 710 

Hales and Able (2001) showed that young-of-the-year of black sea bass (Centropristis striata) could not 711 

tolerate water temperatures of <2 - 3°C. This restriction is also shared by other species which occur in  712 

the Chesapeake Bay: summer flounder (Paralichthys dentatus), striped bass (Morone saxatilis), Atlantic 713 

croaker (Micropogonias undulatus), weakfish (Cynoscion regalis) and spot (Leiostomus xanthurus) also 714 

appear to have lethal lower temperature limits of ~2 - 3°C (Schwartz 1964; Malloy and Targett 1991; 715 

Atwood et al. 2001; Lankford and Targett 2001; Rome et al. 2005). In the case of blue crab (Callinectes 716 

sapidus), this temperature limit also interacts with salinity, with cold, low salinity conditions least 717 

favorable for survival (Rome et al. 2005; Hines et al. 2010). As a result of these tolerance limits, 718 

recruitment variability in some of these species (e.g. Atlantic croaker: Hare and Able 2007) has been 719 

directly linked to over-wintering mortality of juveniles in estuarine habitats, with warmer winters being 720 

more favorable. During the monitoring period of the Thomas Point buoy (1985-2016), mean monthly 721 

surface temperatures were <3°C in 48% of years for January, 54% of years for February, and 3% of years 722 

for December. By 2071-2100, projected mean monthly surface temperature at the Thomas Point 723 

location fell below 3°C on only one occasion: a January in the CW GCM. Our results thus suggest that 724 

under RCP8.5, even using the most conservative GCM considered, the over-wintering mortality 725 

restriction on recruitment for many fish species may be completely removed in the Chesapeake Bay.    726 

 727 

Species that rely on environmental cues for spawning initiations and migration may also shift their 728 

phenology in response to changing temperature and flow characteristics. For example, temperature 729 

influences movement of striped bass within the Chesapeake Bay, and both temperature and flow 730 

regimes drive immigration and emigration of river herring (Alosa aestivalis, A. pseudoharengus) in and 731 

out of the Bay, across multiple life stages (Peer and Miller 2015; Tommasi et al. 2015). Adult spawning 732 

activity may be associated with specific conditions most favorable for larval survival: larval striped bass 733 

survive best at 15 - 20°C, and current spawning activity peaks from April-June, where surface 734 

temperatures currently average ~18°C across the Chesapeake Bay (Rutherford and Houde 1995; Secor 735 

and Houde 1995). These are projected to increase to between 21.4°C (CW) and 23.3°C (WW) by the end 736 
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of the century. To ensure spawning success, striped bass will therefore have to acclimate to warmer 737 

temperatures, or shift their spawning season to earlier in the year. Spawning activity in some species is 738 

also timed to maximize food availability for larvae, and to take advantage of seasonal blooms in primary 739 

productivity caused by temperature and flow patterns. If the timing of favorable temperatures shifts at a 740 

different rate to the timing of favorable feeding conditions, a mismatch may result, with implications for 741 

recruitment success (Wood et al. 2002).     742 

 743 

Future temperature and salinity changes will also impact important benthic habitats, such as submerged 744 

aquatic vegetation (SAV). In the Chesapeake Bay, these primarily comprise seagrasses in higher salinity 745 

zones, and freshwater angiosperms in lower salinity locations (Dennison et al. 1993; Kemp et al. 2004). 746 

SAVs provide essential habitat for multiple life stages of vertebrate and invertebrate organisms in the 747 

Bay, as well as assimilating nutrients and reducing turbidity (Kemp et al. 2005). However, they are 748 

strongly sensitive to changes in salinity regimes and water quality within the estuary. Future changes to 749 

salinity in the Bay may shift the spatial distributions of different types of SAV, depending on their 750 

physiological tolerances. In addition, any decrease in water quality driven by changing streamflow 751 

regimes (e.g. Lee et al. 2016) may reduce light penetration, and lead to the loss of SAV beds.  752 

 753 

Climate change is likely to influence the abundance and distribution of not just economically and 754 

ecologically beneficial species, but also nuisance and pathogenic organisms which lead to management 755 

issues. A good example of this is the Chesapeake Bay is the occurrence of Vibrio spp., which cause 756 

potentially severe illness in humans through foodborne and environmental exposure (Ralston et al. 757 

2011). Vibrios are currently most abundant in warmer water temperatures in the Chesapeake Bay, and 758 

associated with species-specific salinity ranges (Kaneko and Colwell 1973, 1978; Constantin de Magny et 759 

al. 2009; Jacobs et al. 2014, 2015). Laboratory experiments show optimum temperatures for these 760 

species of 37 - 39°C: much warmer than for the vertebrates described above, and much warmer than 761 

currently observed water temperatures in the Chesapeake Bay (Kelly 1982; Miles et al. 1997; Sedas 762 

2007). Projections from the statistical framework therefore suggest that Vibrio concentrations in the Bay 763 

are likely to increase. Jacobs et al. (2014) found that 96% of positive water samples for V. vulnificus were 764 

collected at temperatures warmer than 15°C. Surface temperature in the Chesapeake Bay is currently 765 

above this threshold between May and October, on average. By the end of the century, the CW model 766 

projected an extension of this time period to April through October, while the WW, WD and CD models 767 

projected favorable conditions for April through November. Changes to projected surface salinity varied 768 
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among models, but the increasing summer salinity in tributaries projected by the WD and CW models 769 

would also likely move Vibrio hotspots upstream.    770 

 771 

In conclusion, we found that an empirical modeling framework using statistically downscaled air 772 

temperature and precipitation was able to reproduce monthly historical flow, surface temperature, and 773 

surface salinity characteristics in the Chesapeake Bay. While choice of GCM contributed a large amount 774 

of uncertainty to future projections, downscaled global climate models suggest a 2 - 5.5°C increase in 775 

surface water temperatures in the Chesapeake Bay by the end of the century in all seasons. Projections 776 

of streamflow were more uncertain, but may increase in the winter and spring, and decrease in the fall, 777 

with subsequent impacts on surface salinity. These changes have implications for biological organisms 778 

that currently use the Bay as feeding, spawning, or nursery habitat, particularly those that are currently 779 

approaching their upper thermal limits during summer. In contrast, limits to recruitment on several 780 

species currently imposed by cold winters may be largely removed. There were multiple uncertainties 781 

associated with our study, including the simplification or exclusion of important physical and biological 782 

processes. However, results presented here provide a simple starting point for investigation of climate 783 

change impacts on spatial characteristics of the Chesapeake Bay, and potentially other estuaries around 784 

the world.     785 
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Figure captions 1218 

Fig. 1: Study area with bathymetry for the Chesapeake Bay, Susquehanna River watershed, and major 1219 

tributaries shown. The location of the Thomas Point buoy is shown in yellow, the location of eight 1220 

weather stations providing air temperature observations are in red, and grid point locations for the WD 1221 

GCM are shown in purple, to highlight the coarse spatial resolution of GCMs 1222 

Fig. 2: (a) Schematic representation of the statistical framework developed in this study. Models are 1223 

boxed, model outputs are un-boxed, (b) conceptual model of a linear model tree (after Solomatine and 1224 

Dulal 2003).  1225 

Fig. 3: Modeling daily surface water temperatures at the Thomas Point buoy: using daily air 1226 

temperatures at Thomas Point (light gray), using a 17-day moving mean of air temperatures (dark gray), 1227 

and using the non-linear equation from Mohseni et al. (2003) applied to a 17-day moving mean of air 1228 

temperatures (black). The 1:1 ratio denoting perfect fit is shown as a black dashed line 1229 

Fig. 4: Water balance model results. Top: observed mean monthly Susquehanna River streamflow at 1230 

Conowingo Dam (black), modeled monthly streamflow from the water balance model (red), and 1231 

modeled monthly streamflow from the water balance model with the snow under-catch correction 1232 

(green). Bottom: observed versus modeled monthly Susquehanna River streamflow 1970-200 1233 

Fig. 5: 2m air temperature and total precipitation anomalies for the Susquehanna River watershed from 1234 

26 GCMs under RCP8.5: 1956-2005 versus 2050-2099. The ensemble mean from all GCMs is shown in 1235 

black, and extended to both axes with the black dashed line. The four GCMs chosen to represent the 1236 

range of potential futures for the Chesapeake Bay are labeled 1237 

Fig. 6: Observed and modeled monthly surface temperature anomaly and surface salinity in the Upper 1238 

and Lower Chesapeake Bay, and Potomac River, 1986 - 2015. Results from one well-sampled station I 1239 

the Mid Bay are also shown (station CB5.1). Time series and R2 statistics are shown for the dataset used 1240 

to train the models (1986 – 2005), and the out-of-sample “test” dataset (2006 – 2015) 1241 

Fig. 7: Observed and modeled September surface temperature and salinity for a warm year (2008) 1242 

versus a cool year (2011), and a wet year (2011) versus a dry year (2010). Results are interpolated 1243 

(kriging) between CTD station locations (shown in black). 1244 

Fig. 8: (a),(b): Projections of mean Susquehanna River watershed 2m air temperature and total 1245 

precipitation from 4 GCMs under RCP8.5, using four statistical downscaling methods. (c),(d): Ten year 1246 
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moving means of air temperature and precipitation from each GCM, with the overall range from (a) and 1247 

(b) shown in gray 1248 

Fig. 9: Ten year moving means of modeled (a) surface water temperature, (b) surface salinity and (c) 1249 

Susquehanna River flow at Conowingo Dam from 4 GCMs under RCP8.5. A mean of the 4 statistical 1250 

downscaling methods is shown, with overall range in gray. (a) and (b) are means across the entire 1251 

Chesapeake Bay.   1252 

Fig. 10: Mean monthly surface temperature, Susquehanna River streamflow, and surface salinity for 1253 

1970-1999 (black), and 2071-2100 (red) under RCP8.5, from each GCM, averaged across all downscaling 1254 

methods. Mean values for each time period are shown in bold lines, thin lines represent ± one standard 1255 

deviation among the thirty years in each time period 1256 

Fig. 11: a, c, e: Mean monthly surface temperature, Susquehanna River streamflow, and surface salinity 1257 

for 1970-1999 (black), and 2071-2100 (colored) under RCP8.5 for the WW model only, for the BCQM 1258 

(blue) and CFQM (pink) statistical downscaling methods. Mean values for each time period are shown in 1259 

bold lines, thin lines represent ± one standard deviation (omitted from future projections for clarity). b, 1260 

d, f: As for a, c, e, but only future change (2071-2100 – 1970-1999) is shown, to highlight differences 1261 

between downscaling methods.   1262 

Fig. 12: Projected changes in surface temperature in the Chesapeake Bay from the WW (a) and CW 1263 

models (b) during summer: 2071-2100 minus 1970-1999, averaged across all downscaling methods. The 1264 

two GCMs shown had the smallest and largest changes in temperature of the four considered. Results 1265 

are shown on a common scale (4.1°C range, a, b), to highlight the difference between the two models, 1266 

and on a model-specific scale (1.5°C range, c, d), to highlight spatial structure 1267 

Fig. 13: Projected changes in surface salinity in the Chesapeake Bay from the (a) WW and (b) WD models 1268 

during winter: 2071-2100 minus 1970-1999. The two GCMs shown had the smallest and largest changes 1269 

in salinity of the four considered 1270 

Figures intended as electronic supplementary material: 1271 

Fig. S1: Projected changes in surface temperature in the Chesapeake Bay during winter, spring, and fall: 1272 

1970-1999 versus 2071-2100. The two models with the strongest (top row) and weakest (bottom row) 1273 

change between the two time periods are shown for each season 1274 
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Fig. S2: Projected changes in surface salinity in the Chesapeake Bay during spring, summer, and fall: 1275 

1970-1999 versus 2071-2100. The two models with the highest (top row) and lowest (bottom row) 1276 

change between the two time periods are shown for each season 1277 

Fig. S3: Mean 2m air temperature in the Susquehanna River watershed 2001-2100, from the four 1278 

statistical downscaling methods applied to the WW model, averaged across seasons (top), and months 1279 

(bottom). The difference between mean temperatures in August between the coolest (BCQM) and 1280 

warmest (CFQM) methods is also shown 1281 

 1282 
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Table 1: Predictor variables included in predictive model trees for surface temperature and salinity 1284 

 Surface 

temperature 

model 

Surface salinity model 

Predicted Thomas Point surface 

temperature (17d mean air temperature 

with non-linear correction) 

X  

Longitude X X 

Latitude X X 

30d change in 17d air temperature X X 

Previous 30d streamflow X X 

Time of day X X 

 1285 

1286 
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Table 2: R2 values between observed and modeled surface temperature (monthly anomalies) and 1287 

surface salinity in 7 regions of the Chesapeake Bay, from the unseen test data not used to build the 1288 

predictive model trees. Mean annual surface temperature and salinity from CTD stations in each region 1289 

are also shown, as are RMSE values between observed and modeled values. 1290 

 Mean 

surface 

temperature 

Mean 

surface 

salinity 

Surface 

temperature 

model: R2 

Surface 

salinity 

model: R2 

Surface 

temperature 

model: RMSE 

(°C) 

Surface 

salinity 

model: 

RMSE 

Lower Bay 17.80 17.96 0.74 0.55 1.14 2.43 

Mid Bay 17.32 14.21 0.70 0.61 1.21 2.03 

Upper Bay 17.70 9.01 0.73 0.76 1.31 1.80 

James River 17.51 10.90 0.77 0.69 1.23 3.00 

Rappahannock 

River 

17.53 12.12 0.62 0.63 1.51 2.31 

Potomac River 17.80 4.08 0.72 0.71 1.36 2.02 

Patuxent River 17.60 10.75 0.63 0.42 1.32 2.19 
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Fig. 6 1322 
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Fig. S3 1367 
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